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Abstract

The photolysis of trifluoromethanethiosulfonates (CF3SO2SR) or trifluorothioacetates (CF3COSR) in the pre-
sence of alkenes provides (trifluoromethyl)alkanes or�-sulfanyl (trifluoromethyl)alkanes. The formation of these
compounds can be controlled by the nature and the ratio of the reactants. © 2000 Published by Elsevier Science
Ltd. All rights reserved.
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The steadily growing interest for fluorinated compounds and, especially, trifluoromethylated products,
requires new methods to introduce directly the CF3 moiety.1 Among all the presently available strategies,2

radical trifluoromethylation constitutes the most versatile tool.
We recently described the synthesis3,4 and the photolytic behavior4 of thioesters of trifluoroacetic

(CF3COSR) or triflic (CF3SO2SR) acids and reported that, under UV irradiation, they generate trifluoro-
methyl radicals which can be trapped by disulfides to yield trifluoromethyl sulfides.

We have now extended this reaction to alkenes as trapping substrates in order to obtain trifluoro-
methylated alkanes. The procedure is typically the same as that for disulfides.5 The results are summari-
zed in Table 1.

In all cases phenyl trifluoromethanethiosulfonate (1) led to a mixture of products resulting from a for-
mal addition of CF3-SR (compounds4) and products resulting from a formal hydrotrifluoromethylation
(compounds5) whereas trifluorothioacetates (2) generally delivered4 only. The high regioselectivity of
these reactions must be noticed since, in all cases, the�CF3 radical reacted on the less hindered carbon
of the double bond. Such a sensitivity to steric factors explains that best results were obtained from
terminal olefins (Table 1, entries 5–9). The different behaviors of1 and2 can be rationalized through the
mechanism proposed in Scheme 1.
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Table 1
Photolysis of1 or 2 in presence of alkenes (3)

Scheme 1. Principle of the trifluoromethylation

After addition of the electrophilic�CF3 radical onto the substrate, a new carbon-centered radicalA
is formed. However, radicalA has a weak nucleophilic character6 which needs to react with a highly
electrophilic sulfur atom to deliver4. We recently demonstrated that trifluoromethanethiosulfonates are
very electrophilic sulfenylating agents because of the high electron-withdrawing character of the CF3SO2

moiety,7 whereas trifluorothioacetates are not.8
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Thus,4 can only result from the reaction ofA with 1. In the other cases,A abstracted a hydrogen atom
from the medium and delivered5.

Such a mechanism is consistent with the fact that the formation of4 increased when an excess of
CF3SO2SR (versus alkene) was used (Table 1, entries 1, 2 and 5–7). On the contrary, an excess of olefin
(versus1 or 2) led to an increased yield of5 (Table 1, entries 1, 3 and 5, 8). This means that5 resulted
predominantly from the abstraction of an allylic hydrogen of the substrate by radicalA.

In order to determine if the solvent is also able to transfer hydrogen atoms toA, we repeated some
reactions in a perhalogenated solvent (Table 2).

Table 2
Photolysis in different solvents

These experiments showed that the solvent did not provide hydrogen atoms toA in a significant way
since almost the same amount of5 was obtained in CFCl2CF2Cl and CH2Cl2. The dismutation of radical
A can also be considered as a minor route to5 since, in some cases, trifluoromethylated olefins (7 and
8) were formed as by-products but usually in a far lesser amount than trifluoromethylated alkanes5. The
different routes to5 are reported in Scheme 2.

Scheme 2. General mechanism

Trifluoromethylated sulfides (CF3SR (6)) were also formed, as shown in Table 1. These compounds
resulted from the reaction of�CF3 with the disulfide produced by dimerization of RS� radicals as
described in Part 1 of this study.4

The complete mechanism of the photolytic process is summarized in Scheme 2.
After reaction of2 with the various alkenes, the mixtures of saturated products5 and unsaturated

ones (7+8) can be reduced to yield selectively a single compound as illustrated in Table 3. Thus,
2-trifluoromethylcyclohexanol (9g) can be prepared from cyclohexanone (via3f), in three steps only
(enolisation, photolysis, reduction).
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Table 3
Hydrogenation of the mixture of5, 7 and8

In conclusion, this strategy could be an effective new method for the synthesis of trifluoromethylated
alkanes or�-sulfanyl (trifluoromethyl)alkanes, even if, at the moment, it seems difficult to exceed a
50% yield. It can be noticed that, because of their sulfanyl moiety, the latter compounds can undergo
further functionalization and constitute useful synthetic tools which are under study in our laboratory. On
the other hand, hydrotrifluoromethylation of alkenes with trifluorothioacetates can constitute a valuable
transformation of unsaturated organic substrates since we have demonstrated that the crude photolysis
mixtures can be reduced to a single product.
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